Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23569, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551610

RESUMO

Early in sepsis, a hyperinflammatory response is dominant, but later, an immunosuppressive phase dominates, and the host is susceptible to opportunistic infections. Anti-inflammatory agents may accelerate the host into immunosuppression, and few agents can reverse immunosuppression without causing inflammation. Specialized pro-resolving mediators (SPMs) such as resolvin D2 (RvD2) have been reported to resolve inflammation without being immunosuppressive, but little work has been conducted to examine their effects on immunosuppression. To assess the effects of RvD2 on immunosuppression, we established a model of macrophage exhaustion using two lipopolysaccharide (LPS) treatments or hits. THP-1 monocyte-derived macrophages were first treated with RvD2 or vehicle for 1 h. One LPS hit increased NF-κB activity 11-fold and TNF-α release 60-fold compared to unstimulated macrophages. RvD2 decreased LPS-induced NF-κB activity and TNF-α production but increased bacterial clearance. Two LPS hits reduced macrophage bacterial clearance and decreased macrophage NF-κB activity (45%) and TNF-α release (75%) compared to one LPS hit, demonstrating exhaustion. RvD2 increased NF-κB activity, TNF-α release, and bacterial clearance following two LPS hits compared to controls. TLR2 inhibition abolished RvD2-mediated changes. In a mouse sepsis model, splenic macrophage response to exogenous LPS was reduced compared to controls and was restored by in vivo administration of RvD2, supporting the in vitro results. If RvD2 was added to monocytes before differentiation into macrophages, however, RvD2 reduced LPS responses and increased bacterial clearance following both one and two LPS hits. The results show that RvD2 attenuated macrophage suppression in vitro and in vivo and that this effect was macrophage-specific.


Assuntos
Ácidos Docosa-Hexaenoicos , Lipopolissacarídeos , Sepse , Camundongos , Animais , Lipopolissacarídeos/toxicidade , NF-kappa B/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Macrófagos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
2.
Front Cell Infect Microbiol ; 11: 737392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589444

RESUMO

Probiotics such as various strains of Lactobacillaceae have been shown to have antimicrobial and immunomodulatory activity. In vitro studies have shown that Lactobacilli can decrease bacterial biofilm formation. Effects on immune cells have been unclear with most studies showing anti-inflammatory activity. The mechanism of effects has not been clearly elucidated. In these studies, we used different concentrations of live Lactobacillus acidophilus as well as cell free filtrate (CFF) derived from different concentrations of bacteria. Use of CFF is advantageous as a therapeutic because in vivo it can directly contact immune cells and its concentration is fixed. Both live cells and CFF inhibited Pseudomonas aeruginosa biofilm formation. Importantly, we show that high concentration CFF destroyed mature biofilm. This activity was not due to a lowered pH per se, as pH matched HCl did not remove mature biofilm. High concentration CFF totally inhibited P. aeruginosa growth and was bactericidal (>99.99%), but low concentration CFF was not bactericidal. To examine the immunomodulatory effects of L. acidophilus, we incubated THP-1 monocytes and derived macrophages with CFF and measured TNFα production. CFF did not significantly increase TNFα production in THP-1 monocytes. When cells were prestimulated with LPS, high concentration CFF increased TNFα production even further. In macrophages, high concentration CFF alone increased TNFα production but did not affect LPS prestimulated cells. In contrast, low concentration CFF decreased TNFα production in LPS prestimulated cells. To elucidate the possible mechanisms for these effects, we repeated the experiments using a NF-κB reporter THP-1 cell line. High concentration CFF increased NF-κB activity in monocytes and macrophages. In LPS prestimulated macrophages, only low concentration CFF reduced NF-κB activity. These results suggest that high concentration CFF alone induced NF-κB expression which could account partially for an increase in TNFα production. On the other hand, in macrophages, the lower non-bactericidal concentration of CFF reduced NF-κB expression and decreased TNFα production after LPS prestimulation. Taken together, the results provide evidence that different concentrations of L. acidophilus CFF possess varying bactericidal, anti-biofilm and immunomodulatory effects. This is important in vivo to evaluate the possible use of L. acidophilus CFF in different conditions.


Assuntos
Lactobacillus acidophilus , Probióticos , Biofilmes , Lipopolissacarídeos , Monócitos , NF-kappa B , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...